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By using fundamental notions and theorems of the Lesbesgue integral, a practical 
version of the Asymptotic Linearity Theorem has been derived. From this new version 
of the theorem, it easily follows that the theorem is also applicable to the additivity 
problems of thermodynamic quantities of molecules having many identical moieties, as 
well as to those of the zero-point vibrational energy of hydrocarbons and the total pi- 
electron energies of alternant hydrocarbons. 

1. Introduction 

The Asymptotic Linearity Theorem (ALT) [1,2] involves an auxiliary function 
space through which one can handle a variety of additivity problems in a unifying 
manner. The extensiveness of this auxiliary space reflects the strength of the theorem 
and the degree of its applicability to studies of the correlation between structure and 
properties in molecules having many identical moieties. 

It has already been shown that the auxiliary space denoted by P(1) 
(cf. section 2 for its definition) is wide enough for the theorem to be applicable to 
the additivity problems of the zero-point vibrational energies (ZPVEs)of hydro- 
carbons [1 -15], and the total pi-electron energies (TPEEs) of alternant hydrocarbons 
[12-26]. However, since the above space was defined implicitly as the closure of 
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a set in a normed space, we have been concerned whether it is possible to make 
a more concise characterization of  P(I) in the ALT, which would clarify and 
simplify the applications of  the theorem. 

In the present paper, we show that P(I) in the ALT or the a space ALT [15] 
coincides with the space of  real-valued absolutely continuous functions defined on 
a closed interval, and give some examples of functions associated with thermodynamic 
properties of  molecules to which the ALT can be applied. 

. Practical versions of the Asymptotic Linearity Theorem and the a Space 
Asymptotic Linearity Theorem 

By I, unless otherwise specified, we shall throughout denote a closed interval 
I = [a, b] with a, b ~ R, a < b. Let AC(I) denote the set of  all real-valued absolutely 
continuous functions defined on I (cf. section 3 for the definition of  absolutely 
continuous functions). 

The following theorem 1 and theorem 2 are practical versions of the ALT and 
XaALT ( a  space ALT), respectively, which we wish to establish in this section. 

THEOREM 1 

Let {MN} ~Xr(q) be a fixed repeat sequence, let I be a fixed closed interval 
compatible with {MN}. Then, for any element q~ 6 AC(I), there exist a(q~), fl(~p) ~ R 
such that 

Tr (p(MN) = a(qg)N +/3(~p) + o(1) (2.1) 

as N ---> ~.  

THEOREM 2 

Let {MN} ~Xa(q) be a fixed a sequence, let 1 be a fixed closed interval 
compatible with {MN}. Then, for any element ~p ~ AC(I), there exists an a(~p) ~ R 
such that 

Tr q~(MN) = a(q~)N + o(1) (2.2) 

as N ----> ~.  

The theorems ALT and XaALT can be reproduced by replacing the symbol 
"AC(I)"  in theorems 1 and 2, respectively, with the phrase "P(1)  in the normed 
space CBV(I)". Here and hereafter, P(1) denotes the set of  all polynomial functions 
with real coefficients defined on / ,  and CBV(I) denotes the normed space of  all real- 
valued continuous functions of  bounded variation defined on I equipped with the 
norm given by 
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II ~P IIcBv = sup l tp(t) I + V/(q~), 
t e l  

(2.3) 

where Vt(tp) denotes the total variation of ~p on I. 
Thus, to prove theorems 1 and 2, we have only to prove the following 

PROPOSITION 1 

The closure of P(I) in the normed space CBV(I) is the set AC(I), i.e. 

P(I) = AC(I) .  (2.4) 

Henceforth, let AC(1) denote the normed space (as well as its underlying set) 
of all real-valued absolutely continuous functions defined on I = [a, b] equipped 
with the norm given by 

b 

II ~' II AC = sup I ~p(t) I + [ I ~p'(t) [ dt .  (2.5) 
t e l  . I  

a 

Let LI(I) denote the linear space of all real-valued Lebesgue integrable functions 
defined on I = [a, b] equipped with the semi-norm given by 

b 

II q~ IlL' -- Jlqg(t) l dt .  (2.6) 
a 

Before proceeding to the proof of proposition 1, we shall recall well-known 
fundamental properties of AC(1) and LI(1). 

PROPOSITION 2 

Let I = [a, b], where a, b e~ R, a < b; then the following statements are true: 

(i) e(I) c AC(I) c CBV(I) c LI(1). (2.7) 

(ii) If q ~ A C ( I ) ,  then tp'(t) exists a.e. and is Lebesgue integrable on I. 
Moreover, 

l 

= .J tp'(s) ds (2.8) tp(t) ~p(a) 

a 

for all t E I. 

(iii) If fELl ( l )  and ~p: I--~ R is the function defined by ~p(t)= Staf(s)ds+ 
constant, then ~p ~ AC(I). Moreover, 

~p'(t) = f ( t )  (a.e.). (2.9) 



268 A. Arimoto, K. Taylor, Practical Asymptotic Linearity Theorem 

(iv) If q~ ~ AC(I), then 

b 

Vt(q~) = f lcP'(t) ldt, (2.10) 
a 

where Vl(~0) denotes the total variation of ~o on /. 

(v) For any fEL l ( I )  and e >  0, there exists a polynomial  function p ~P(I)  
such that 

b 

f I f ( t ) -  p(t)[dt < e, (2..11) 

a 

(vi) The quotient space L ~ ( I )  = L ~ ( l) /{f  ~ L 1 (I) : f i t )  = 0 (a.e.)) equipped with 
the L 1 norm is a complete  normed space, i.e. a Banach space. 

Proof of proposition I 

(i) P(I) D AC(I)" By proposition 2(i), (iv), we may regard X1 = (AC(1), 
I]" IIAc) as a subspace of  the normed space X2 = (CBV(1), 11. ]]cBv)- Hence, it suffices 
to show that P(I) is dense in X1. 

Let q~ ~ AC(I), e > 0 be arbitrary. By proposition 2(v), there exists a p ~ P(I) 
such that 

¢p(a) = p (a) 

b 

f [ ¢p'(t) - p'(t) ldt 
a 

and 

(2.12) 

< e / 2 .  (2.13) 

On the other hand, since ~p, p ~ AC(1), by proposition 2(ii), (2.12), and (2.13), 
we obtain 

l 

[ ¢p(t) - p(t)[ = I f  (p'(s) - p'(s) ds [ 
a 

b 

< f [q~'(s) - p'(s)[ds < e/2 (2.14) 

a 

for all t ~ I, so that 

sup l ~p(t) - p(t) l < e / 2 .  (2.15) 
t e l  
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By (2.13) and (2.15), it then immediately follows that 

IltP-PlIAc < e, (2.16) 

proving that P(I) is dense in Xl. 

(ii) P(I) c AC(I):  By proposit ion 2(i) and the fundamental  properties of  the 
closure operation, it is enough to prove that the set AC(1) is a closed set in the 
normed space X 2 = (CBV(I),  I1" IIcBv). 

Consider X1 = (AC(1), I1" IIAc) as a subspace of the normed space X2 = (CBV(1), 
I1" IIcBv) as in (i), and note that if XI is a complete space, then AC(I) is a closed 
set in X 2. Thus,  it remains to show that X1 is complete.  

Let C(1) denote the Banach space of  all real-valued continuous functions 
defined on I equipped with the norm given by 

II ~P I1.~= sup I tp(t) I. 
te l  

Recall  the definit ions of I1" IIAc and 
equality 

II tO II AC = II ~o II ~ + II ~o' II L 1 

holds. 

(2.17) 

I[" IlL' and note that for all ~o ~ AC(I) the 

(2.18) 

Let tpn ~X1 be any Cauchy sequence. Then by the completeness of C(I) and 
LI(I)  (proposition 2(vi)), we infer that there exist f ~ C ( l ) ,  g ~LI(I) such that 

I Iq~- f l l . .  ---> 0, (2.19) 

II ~o,~- gilL, ---> 0, (2.20) 

a s  n ---> ~ .  

By proposit ion 2(iii), it is easy to verify the following inequalities valid for 
any t e l :  

¢ 

I f ( t )  - f (a) - f g(s) ~ I 
a t 

< I f ( t )  - (Pn(t) I + I ~on(a) - f(a) l+ltp,(t) - tp~(a) - f g(s)dsl 
a 

< 2 II ~o, - f I1.,+ II tp~, - g IlL' • (2.21) 

Lett ing n--> ,~, in (2.21), and using (2.19) together with (2.20), we see that the 
smallest  side of (2.21) vanishes so that f can be expressed as an indefinite integral 
of  the Lebesgue integrable function g: 
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t 

f ( t )  = f (a)  + f g(s)ds,  t ~ l. 
a 

Hence, by proposit ion 2(iii), we have 

(2.22) 

f E AC(I), (2.23) 

f ' ( t )  = g(t) (a.e.), (2.24) 

from which it readily follows that 

II ~on-fllAc ---> 0 (2.25) 

as n ---> ~.  Therefore, we conclude that (Pn is a convergent sequence in X~ and that 
X1 is complete.  [] 

Remark 

In Dunford and Schwartz [27], AC(1) is equipped with the norm 

b 
t ~  

II rp Iio = I ~0(a) I + J I ¢p'(t) Id t .  (2.26) 
a 

It is easy to check that I1" Iio and I1" II/,c are equivalent norms, so the completeness  
of  X 1 could also be derived from the fact that (AC(1), I1" Iio) is a Banach space, 
Theorem IV.12.3 [27]. 

3. Absolutely continuous functions and the applications of the practical version 
of the Asymptotic Linearity Theorem 

A function ~0: I = [a, b] --> R is said to be absolutely continuous on I if, given 
any e >  0, there exists a •> 0 such that for every finite system of  pairwise disjoint 
subintervals (al, bl), (a e, b2) . . . . .  (an, bn) c [a, b], 

~ (bk - ak) < a (3.1) 
k = l  

implies 
n 

~ I ~o(b k) - ~o(ak) I < e .  (3.2) 
k = l  

The function ~Ol: I --+ R defined by q~1(t) = Itl is obviously absolutely continuous 
on I, and (Pl/2: I--> • defined by q~l/2(t) = Itl 1/2 is easily shown to be absolutely 
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continuous on I by setting t5 = ea/2 for any given e > 0 in the above argument. Thus, 
the applicability of the ALT to the additivity problems of  the TPEEs (tpl) and the 
ZPVEs (epl/2) becomes more easily checked (cf. ref. [2] for the proof of  q~l, qh/2 
c e ( l )  c CBV(I)). 

With the criteria of  the absolute continuity in mind, we may find other 
additivity problems to which the ALT can be applied. 

Let Char(m, k) denote a linear chain with fixed ends consisting of  N particles 
each of  mass m and separation 1 which can vibrate harmonically under a restoring 
force due to the first neighbour interaction k [12]. Assume that Char(m, k) is in 
thermal equilibrium with the heat bath at absolute temperature T > 0. Let  M~, with 
N > 2 denote the mass-weighted Hessian matrix associated with Char(m, k), which 
is an N × N positive definite real symmetric matrix [12] and put M~ = c > 0 as a 
dummy term. 

Then by a similar argument as in the expression of  ZPVEs of  Char(m, k) [12], 
one can express the internal energy UN of  Char(m, k) in terms of the trace of the 
matrix, 

UN = Tr tpv(M'N). (3.3) 

Here, tpu is defined as follows on a closed interval I = [0, b] compatible with the 
repeat sequence {Mk}" 

~Ou = g u o  f ,  

where f :  I --) [0,-fb] and gu" [0, x/b] --) R are functions defined by 

(3.4) 

and 

f ( t )  = r [  

gu(CO) = (h/2)co + h co/[exp(hco/kT) - 1], 

(3.5) 

(3.6) 

where h is the Planck constant, k is the Boltzmann constant. 
Similarly, the vibrational heat capacity at constant volume C,N of  Char(m, k) 

can be expressed by 

Q,N = Tr tpc(M~v). (3.7) 

Here, <Pc is defined as follows on a closed interval I = [0, b] compatible with the 
{MN}. repeat sequence ' • 

~Oc = gc o f ,  (3.8) 

where f "  I --) [0, ,j-b] and gc : [0, -J-b] ---> • are functions defined by (3.5) and 

gc(O9) = k(h og/(2kT))2 /sinh2(hco/2kT).  (3.9) 
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(See, e.g. refs. [28, 29] for the usual expressions of U and Co which do not use the 
trace of the matrix.) 

By the definition of the absolutely continuous functions, one easily verifies 
that if f is both absolutely continuous and monotone increasing on [a, b], and g is 
absolutely continuous on [ f (a) , f (b ) ] ,  then the composite function g o f is absolutely 
continuous on [a, b]. 

Since f defined by (3.5) is obviously both absolutely continuous and monotone 
increasing on I = [0, b], to prove that q~u, ~Pc ~ AC(I), it clearly suffices to show that 
gu and gc are absolutely continuous. Using the well-known fact that continuously 
differentiable functions on a compact interval are all absolutely continuous functions, 
we may easily verify that gu and gc are absolutely continuous. Therefore, q~v, q~c ~ AC(/). 

Thus, we see that one can apply the practical version of the Asymptotic 
Linearity Theorem also to the additivity problems of thermodynamic quantities, in 
addition to those of ZPVEs and TPEEs. A more detailed discussion will be published 
elsewhere. 
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